
Detecting metastatic tissue in lymph
nodes with deep learning

Marley Sudbury (1838838)

Supervisor: Paul Rosin Moderator: Dave Marshall

Computer Science With a Year in Industry (BSc)

School of Computer Science and Informatics
College of Physical Sciences

Cardiff University

Friday 27th May 2022

Abstract

To track the spread of a tumour, pathologists examine lymph nodes in the
surrounding area for metastatic growths. This is done by looking at high
resolution scans of slides with tissue taken from the lymph nodes. Deep
learning systems have demonstrated a great ability to classify images, and
so researchers have looked at applying these techniques to the problem of
tissue classification, including lymph node classification, with the aim of cre-
ating a system which can aid pathologists. In this project a convolutional
neural network (CNN) was used to evaluate two methods for classifying
lymph nodes: a whole-slide method, which uses a down scaled version of
the entire slide image as its input, and a patch-based method which takes
small patches of the image as the input. The effects of data augmentation
and stain normalisation were also investigated. Two datasets were used in
this project, with one provided by the Head and Neck 5000 Study, and
the other being the Camleyon16 training dataset. The best performance
obtained from the whole-slide method was an area under the receiver oper-
ating characteristic curve (AUC) of 0.727, with a false positive rate (FPR)
of 0.36 and a false negative rate (FNR) of 0.22. The patch-based method
gave an AUC of 0.890, with an FPR of 0.21 and FNR of 0.24. This level of
performance falls slightly short of the state of the art, and suggestions are
provided for why this is and how it can be improved in future.

i

Acknowledgements

I would like to thank Dr Adam Jones and Dr Damian Farnell from the
Cardiff University School of Dentistry for their assistance in understanding
the background of this project from a medical perspective, the Head and
Neck 5000 project for providing one of the datasets used and the organisers
of the Camelyon16 project for making the other dataset used publicly avail-
able, Cardiff University IT Support for their assistance and for providing
the hardware used in this project, the Computer Science Subject Research
Ethics Committee (SREC) for answering my queries quickly and effectively,
all the researchers in this area whose work I have referenced, Mitko Veta and
Geoffrey Schau for making their stain normalisation code available under
license and finally my project supervisor Paul Rosin and moderator Dave
Marshall for their advice throughout this project.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

1 Introduction 1

2 Background 3
2.1 Histopathology . 3
2.2 State of the art . 4
2.3 Selection of datasets . 8
2.4 Data augmentation . 8
2.5 Stain normalisation . 10

3 Specification and design 12
3.1 Requirements . 12
3.2 Reading whole slide image (WSI)s 12
3.3 Deep learning architecture 13
3.4 Hardware . 14
3.5 Interface . 14
3.6 Code structure . 14
3.7 Whole-slide approach . 15
3.8 Patch-based approach . 16

4 Implementation 19
4.1 Model architecture . 19
4.2 Image pipeline . 20
4.3 Patch generators . 20
4.4 Trainer . 22

iii

4.5 Classifier . 24
4.5.1 Whole-slide . 24
4.5.2 Patch-based . 24

4.6 Evaluation . 25
4.7 Annotation generator . 25
4.8 Data availability . 25
4.9 Code availability . 26
4.10 Challenges . 26

5 Results and evaluation 29
5.1 Whole slide approach . 30

5.1.1 Dataset comparison 30
5.1.2 Stain normalisation only 31
5.1.3 Data augmentation only 31
5.1.4 Stain normalisation and data augmentation 32
5.1.5 Overall winner . 32

5.2 Patch-based approach . 32
5.2.1 Dataset comparison 34
5.2.2 Stain normalisation only 34
5.2.3 Data augmentation only 35
5.2.4 Stain normalisation and data augmentation 35
5.2.5 Overall winner . 35

5.3 Wisdom of crowds . 35

6 Future work 38

7 Conclusions 40

8 Reflection 42

A Higher resolution patches 45

B Loss and accuracy of models on training and validation
data 47

iv

LIST OF FIGURES v

References 49

List of Figures

2.1 Example of a whole slide image (WSI) of a lymph node stained
with H&E. 4

2.2 Example of a partially annotated whole slide image (WSI) of
a lymph node. The areas surrounded with red are positive /
metastatic tissue, and the area surrounded in blue is negative /
normal tissue. 5

2.3 Example of slide annotation in the GeoJSON format used by
QuPath. “colorRGB” value is stored in two’s complement 32
bit integer format. -3670016 = 11111111| {z }

alpha

11001000| {z }
red

00000000| {z }
green

00000000| {z }
blue

= (200, 0, 0). 6

3.1 Visual representation of whole slide image (WSI) layers in the
Camelyon16 dataset. 13

3.2 Left, maximum information retained due to smart cropping (Head
and Neck 5000). Right, unnecessary information loss (Came-
lyon16). 16

3.3 The flow of data through the system. 16

3.4 An example of a positive tissue annotation provided with the
Camelyon16 dataset, displayed with QuPath. 17

4.1 The process for generating training data for the whole-slide ap-
proach. 20

4.2 A 100 ⇥ 100 px patch from a slide before stain normalisation
(left) and after (right). 22

4.3 Diagram showing how the data sources interact with the pro-
grams implemented. 23

4.4 Left: whole slide image. Centre: binary ground truth mask
generated from GeoJSON annotation file, showing three lesions
in green. Right: confidence mask generated by patch classifier.
The colours here are boosted to the range 0–255 to make them
easier to distinguish. 26

4.5 Using the annotation file generated by the program, it is possible
to compare the patches it has classified as positive (blue) with
the ground truth of which tissue is actually positive (red). . . . 27

5.1 reciever operating characteristic (ROC) of ↵an on normalised
data, with an AUC of 0.727. 33

5.2 The average AUC of patch-based models by features. 36
5.3 reciever operating characteristic (ROC) of ↵pan on normalised

data, with an AUC of 0.890. 36

A.1 reciever operating characteristic (ROC) of �p 1
4a

on non-normalised
input. AUC of 0.806. 46

List of Tables

2.1 The performance of various existing solutions. 9

3.1 The neural network structure used in this project, based on
Ciompi et al. (2017). MP = max pooling layer, SM = softmax
layer. 13

3.2 The pixel ratio and uncompressed size of whole slide image
(WSI) file layers in the Camelyon16 dataset as read by OpenSlide.
Layer 0 is scanned at 40⇥ magnification. 18

3.3 The pixel ratio and uncompressed size of whole slide image
(WSI) file layers for a slide in the Head and Neck 5000 dataset
as read by OpenSlide. Layer 0 is scanned at 40⇥ magnification.
Note that unlike the Camelyon16 dataset, the resolution varies
slightly from slide to slide. However, the magnification and order
of layers is consistent across the dataset. 18

5.1 Results for different models using the whole-slide approach. . . . 30

vi

LIST OF TABLES vii

5.2 Averages for the two datasets using the whole-slide approach. . 31
5.3 Average accuracy from training and testing with and without

stain normalisation (SN). 31
5.4 ↵a accuracy from training and testing with and without stain

normalisation (SN). 31
5.5 Results for different models using the patch-based approach. . . 34
5.6 Average accuracy from training and testing with and without

SN in the patch-based method. 35
5.7 Flock results for the two methods. 37

A.1 Results of partially tested high-res patch-based method. 45

B.1 Training and validation metrics for each model from the final
epoch. 47

B.2 Training and validation metrics for the models referenced in Ap-
pendix A, from the final epoch. 48

1 Introduction

Head and neck cancer is a group of cancers which occur in the head and
neck, such as mouth cancer, laryngeal cancer, throat cancers, salivary gland
cancer and nasal and sinus cancer. It is a relatively uncommon form of
cancer, with 12,422 cases diagnosed each year on average from 2016–2018
in the UK. In the same period, the UK had an average of 4,077 deaths
from head and neck cancers per year. 19–59% of people with head and neck
cancers survive for more than 10 years (Cancer Research UK 2022), with
patient outcomes being dependent on the type of cancer, as well as factors
such as age and sex.

Like all cancers, head and neck cancers can spread throughout the body
via the lymphatic system (Cancer Research UK 2020). This results in sec-
ondary malignant growths, initially in lymph nodes near to the original
tumour. This process of cancer spreading is called metastasis and affected
lymph nodes are referred to as metastatic lymph nodes (MLNs). Pathol-
ogists need to monitor this spread, as spread to lymph nodes can lead to
a higher grade of cancer with a lower chance of survival, and inform treat-
ment options (NHS 2019). In mouth cancer, like many cancers, the TNM
staging system is used, where T refers to the size of the tumour, N refers to
the degree of spread to regional lymph nodes, and M refers to the presence
of metastasis in distant organs.

Pathologists can determine if a lymph node is metastatic by removing it
and examining a cross sectional image of it taken by a powerful microscope.
The aim of this project is to create software which uses deep learning to
classify these images of lymph nodes into those which contain metastatic
tissue and those that do not. This can then be used to assist pathologists in
their work, either by verifying their classification or guiding them to areas
which do not appear to be normal tissue.

The primary beneficiaries of this work are pathologists, who could use
this software to assist them in making diagnoses. Improvements to the
accuracy of diagnoses also benefits patients who will have access to the best
treatment depending on the severity of their cancer, therefore increasing

1

2 1. INTRODUCTION

their likelihood of survival.
The scope of the project is to evaluate the impact of different techniques

on the effectiveness of a deep learning solution to perform metastatic lymph
node detection. It will also look at the differences between different datasets,
and the ability to generalise this classification across datasets.

There are two key approaches taken in this project. One is to use the
entire slide as the input to the network (the whole slide method), and the
other is to split the slide into small patches and use these patches as the
input (the patch-based method). Of these two, the latter is the most widely
explored in previous research, however the former has been used recently
with some success.

The assumptions upon which this work is based are that the datasets
used are correctly annotated at both the slide level (whether the lymph
node shown in the slide contains positive tissue) and where applicable at
the lesion level (which parts of the slide contain positive tissue). Another
assumption is that the lymph nodes in the head and neck are similar enough
to the lymph nodes in the breast that any difference would not affect the
models ability to classify. This is as one dataset consists of lymph nodes
from the head and neck, and the other from the breast.

2 Background

2.1 Histopathology

In the field of pathology, cancer spread can be diagnosed by checking lymph
nodes near the site of the tumour for metastatic tissue. This is done by
removing the lymph node, fixing it with a substance such as formalin so
it doesn’t degrade, dehydrating it by immersing it in alcohol, embedding
it in paraffin wax to create a tissue block, cutting a thin slice from the
block, putting that onto a slide and staining the slide with dyes (Feldman
and Wolfe 2014). These dyes make the different tissues present more easily
distinguishable. The principle staining used in histology is hematoxylin and
eosin (H&E). Staining makes it possible for trained pathologists to identify
the presence of metastatic tissue, although this process is time consuming.
In addition to the time for an individual pathologist to examine a slide,
more time is taken up by pathology review, which has been shown to be a
critical process by Vestjens et al. (2012), who found that it lead to a change
in 24% of breast cancer patients’ node staging. A high resolution scan is
taken of the slide, which is then examined by pathologists on a computer
screen. This image is called a whole slide image (WSI), an example of which
can be seen in Figure 2.1.

The precise colours present in a WSI can vary due to factors such as
the concentration of dye used, the thickness of the tissue, and the use of
different brands of slide scanners. To a trained human, the small differences
in colour that arise usually have no impact on their ability to diagnose,
however even minor lighting or colour shifts can cause issues for neural
networks (Folmsbee et al. 2019). This is why it is best practice to normalise
the staining before the data is used for training or is classified, and Ciompi
et al. (2017) found a 28.7% increase in accuracy from doing so. Stain
normalisation is discussed in more detail in section 2.5.

3

4 2. BACKGROUND

Figure 2.1: Example of a WSI of a lymph node stained with H&E.

2.2 State of the art

Deep learning has been seen as an attractive approach to improve the accu-
racy and time efficiency of WSI analysis and pathology review. The most
common approach to deep learning in this field, such as that employed by
X. Wang et al. (2021), is to use slide annotations which have been care-
fully constructed by a trained pathologist to train a neural network that
can classify small patches of a WSI. An example of an annotated WSI can
be seen in Figure 2.2, whilst Figure 2.3 shows how these annotation are
represented in GeoJSON format.

In that project, their solution consisted of three ‘modules’. Firstly, to
locate the lymph node within the WSI, they trained a segmentation net-
work. This used the U-Net architecture, which is a CNN that uses up
convolution to create a segmentation map. This was trained on masks gen-
erated from 1⇥ magnification thumbnails of the slides based on annotation
provided by a pathologist. The next stage is a feature extractor which iden-
tifies certain features within patches of 768 ⇥ 768 pixels taken from slides
at a ⇥20 magnification. Various architectures were tried for this, such as
VGG19, AlexNet, Inception V4 and MobileNet V2, although they found

2.2. STATE OF THE ART 5

Figure 2.2: Example of a partially annotated WSI of a lymph node. The
areas surrounded with red are positive / metastatic tissue, and the area
surrounded in blue is negative / normal tissue.

that ResNet-50 achieved the highest classification accuracy. The final part
of their solution was the use of the neural conditional random field, which
models the spatial correlation of patches to give a set of confidence values
for tumour regions.

Another approach is to train a neural network to diagnose the entire
WSI in one go. This is infeasible on most computer systems, as an entire
WSI at full resolution may take up 10s of gigabytes. However, it is possible
to do on a system with lots of memory using the unified memory tech-
nique, where all RAM and VRAM in a system can be accessed as a single
address space. This was shown by Chen et al. (2021) to achieve excellent
performance (an AUC of 0.9594 on classifying adenocarcinoma), although
in that study they were classifying types of lung cancer rather than lymph
nodes. The key advantage of this approach is that the training data does
not need to be annotated at the lesion level, but only at the slide level.
This means that less time and effort needs to be spent in preparing the
training data, and so more data can be used. It also allows for the possi-
bility of the model picking up on things which may have been missed by a

6 2. BACKGROUND

{

"type":"FeatureCollection",

"features":[{

"type":"Feature",

"geometry":{

"type":"Polygon",

"coordinates":[[

[17289, 27134],

[17241, 27136],

. . .

[17337, 27136],

[17289,27134]

]]

},

"properties":{

"object_type":"annotation",

"classification":{

"name":"Tumor",

"colorRGB":-3670016

},

"isLocked":false

}

}]

}

Figure 2.3: Example of slide annotation in the GeoJSON format used by
QuPath. “colorRGB” value is stored in two’s complement 32 bit integer
format. -3670016 = 11111111| {z }

alpha

11001000| {z }
red

00000000| {z }
green

00000000| {z }
blue

= (200, 0, 0).

2.2. STATE OF THE ART 7

human, such as micrometastases. They first downscaled the slides in their
dataset from ⇥20 magnification to ⇥4 magnification and padded them to
21,500 ⇥ 21,500 pixels. They then used the ResNet-50 architecture with
fixup initialisation, which they trained as a ternary classifier with the la-
bels adenocarcinoma, squamous cell carcinoma, and non-cancer. The final
pooling operations they used were global average pooling (GAP) and global
max pooling (GMP), of which they found that GMP performed far better,
with an AUC of 0.9594 for adenocarcinoma compared to 0.6506 achieved
by GAP. They suggest that this difference is caused by GAP losing subtle
information presented in tiny features within the image. They trained on
5,606 slides, and used 1,397 slides for evaluation. They also implemented
various multiple instance learning (MIL) approaches to compare against.
These are patch-based approaches where training data is not labelled at
the patch level, but is labelled as a bag. For example, a bag labelled pos-
itive would include at least one patch that is positive, whilst a bag that
is negative would contain no positive patches (Babenko 2008). Of these,
they found that MIL with max feature aggregation and random forest slide-
level aggregation performed the best, but slightly worse than their proposed
whole-slide method. The results for these methods are included in Table 2.1.

The Camelyon16 Challenge which ran in 2016 was designed to find the
best performing algorithms at classifying lymph nodes in breast cancer pa-
tients, and compare these with the performance of pathologists. In the
paper published after the conclusion of the challenge, Ehteshami Bejnordi
et al. (2017) reported that the best performing algorithm (Harvard Medical
School and MIT Method 2) achieved an AUC of 0.994, whilst a pathologist
with no time constraint achieved 0.966 and a team of 11 pathologists with a
flexible time constraint of 2 hours to classify 129 slides achieved an average
AUC of 0.810. This best performing algorithm used the GoogLeNet archi-
tecture proposed by Szegedy et al. (2014), which is a 27 layer deep CNN
which includes ‘inception modules’, where the input layer goes through dif-
ferent sizes of convolution simultaneously, the outputs of which are concate-
nated together for the output. The solution also used stain normalisation
and ‘extensive’ data augmentation.

Please see Table 2.1 for a summary of the performance for various ex-
isting solutions in this area. This table uses the terms AUC, accuracy,
sensitivity and specificity, which shall be defined here. Accuracy is the per-
centage of classifications which were correct. Specificity, also called the true
negative rate, is the percentage of negative samples which were correctly
labelled. Sensitivity, also called the true positive rate, is the percentage of
positive samples which were correctly labelled. AUC stands for area under
the receiver operating characteristic curve. This curve represents the rela-

8 2. BACKGROUND

tionship between the sensitivity and the specificity at various classification
thresholds. By taking the area underneath the curve we get a value which
can indicate how successful the model is at classifying generally, regardless
of the threshold.

These same values for the solutions made in this project will be given
in chapter 5. “—” indicates that corresponding value was not published.

Specificity =
True Negatives

True Negatives + False Positives

Sensitivity =
True Positives

True Positives + False Negatives

2.3 Selection of datasets

To evaluate the transferability and robustness of any solution produced in
this project, two datasets will be used. This allows for one dataset to be
used for training, and the other to be used for evaluation. Therefore, any
overfitting to the training data should be shown in the evaluation.

The first dataset was kindly provided by the Head and Neck 5000 study.
This is anonymised secondary data, and was provided with only slide-level
annotation. Lesion-level annotation for 10 positive slides in this dataset
was provided by Dr Adam Jones (an example is shown in Figure 2.2) so
that the patch-based method could be applied to this data. There are 65
positive slides and 45 negative slides in this dataset.

No publicly available lymph node slide datasets associated with head
and neck cancer were found, however since the structure of lymph nodes
around the body are similar, any dataset of lymph nodes should be use-
able. For the second dataset, the Camelyon16 training dataset was cho-
sen, containing WSIs of lymph nodes from breast tissue. This comes with
both slide-level and lesion-level annotations. The full Camelyon16 training
dataset contains 160 positive slides and 110 negative slides, however due to
the amount of storage space available only the first 50 negative slides and
the first 50 positive slides were used in this project.

2.4 Data augmentation

It is common practice when training a neural network to classify images, to
apply some form of augmentation to the images being used as training data.
This is done to prevent over fitting. J. Wang and Perez (2017) showed that

2.4. DATA AUGMENTATION 9

Paper AUC Accuracy Specificity Sensitivity
Harvard Medical
School and MIT,
Method 2
(Ehteshami
Bejnordi et al.
2017)

0.994 — — —

X. Wang et al.
(2021) (slide
level)

0.990 96.9% 96.1% 98.5%

X. Wang et al.
(2021) (patch
level)

0.986 — — —

Pathologist
without time
constraint
(Ehteshami
Bejnordi et al.
2017)

0.966 — 98.7% 93.8%

Chen et al. (2021)
(whole-slide) 0.9594 — — —

Chen et al. (2021)
(MIL) 0.9345 — — —

Mean of 11
pathologists with
time constraint
(Ehteshami
Bejnordi et al.
2017)

0.810 — 98.5% 62.8%

Table 2.1: The performance of various existing solutions.

affine transformations such as scaling the images, rotating them, cropping
them, reflecting them and translating them are effective in increasing the
validation accuracy of a deep learning model. By using these traditional
augmentation techniques they were able to improve validation accuracy of
classifying dogs vs cats from 0.705 to 0.775. Data augmentation is also
used to prevent a model from overfitting to the training data. Transforma-
tions such as the above are built in to Tensorflow as Keras pre-processing
layers which can be added to the beginning of the model. When used for

10 2. BACKGROUND

classification, these layers are not activated.

2.5 Stain normalisation

As discussed in section 2.1, the result of staining a slide can vary slightly
between labs and even in the same lab over time. As well as the differences
in staining, the colours captured by different scanners can vary consider-
ably, even when scanning the same slide (Vahadane et al. 2016). To a
trained human pathologist, these slight differences usually make no impact
on their ability to accurately diagnose, however for a neural network it can
potentially cause misclassification.

The stain normalisation method used in this project is the one proposed
by Macenko et al. (2009). When this method was evaluated by Ciompi et al.
(2017), they found that it lead to a significant increase in accuracy (more
than 20% when applied to both training data and evaluation data), although
they also experienced some issues where it failed to normalise patches that
were of an unexpected tissue type (adipose tissue). This method was not
implemented as part of this project, as a Python implementation has al-
ready been created and published by Veta and Schau (2020).

This method for stain normalisation has two key steps. Firstly, ‘stain
vectors’ are automatically calculated for each of the stains. These are vec-
tors which describe the proportion of red, green and blue light wavelengths
that are absorbed by the stain. To obtain these vectors, the pixels are trans-
formed from RGB space to optical density (OD) space using the following
equation:

OD = �log10(I)
where I is the RGB colour vector of the pixel, with each component

normalised to between 0 and 1. This transformation is important, because
in OD space the two stains can be separated by a straight line, which is
not possible in RGB space. A single value decomposition (SVD) is then
calculated for each pixel in the OD space, which is a representation of the
OD value using eigenvalues and eigenvectors. A plane is created from the
two largest SVD values. The data is projected onto this plane, and the
angle is calculated of each point from the first SVD direction. The ↵th

and 100� ↵th percentiles of the angle are converted back to OD space and
returned as the optimal stain vectors (the authors recommend that ↵ = 1,
but state that good results are obtained from a range of values).

The next step is to normalise the stains. For each stain, the intensity
histogram is calculated of all pixels which have a majority of that stain.

2.5. STAIN NORMALISATION 11

The 99th percentile of the intensity histogram is taken to be an approxi-
mation of the maximum intensity. By scaling the histograms to have the
same ‘pseudo-maximum’, the stain is then normalised. This method also
allows separation of the stains into separate images by deconvolving with
the determined stain vectors, although this will not be used in this project.

3 Specification and design

3.1 Requirements

• Read in an image in WSI format (such as .tif or .svs).

• Return a label for the image, and a set of labels for regions within the
image.

• Return region labels as an annotation file so that pathologists can
view the results on the slide.

• When run on evaluation data return accuracy, specificity, sensitivity
and AUC.

• Be capable of running within a reasonable amount of time.

3.2 Reading WSIs

WSIs come in several different file formats, such as .svs and .tif. Fundamen-
tally, they are all similar in that they contain a compressed high resolution
scan of a slide, as well as several down-sampled versions of the same image.
This is done so that slide viewing software such as QuPath can show the
slide at different zoom levels without running out of memory. These layers
can be thought of as an image pyramid (see Figure 3.1).

Most standard image processing libraries struggle with these WSI for-
mats, as they usually attempt to load the whole image into memory at the
same time, and full-resolution WSIs are usually 10s of GBs. One way of
interacting with WSIs is the OpenSlide library. This allows for loading the
slide and extracting regions of it from the desired scale level. Alternatively,
a lower resolution of the slide can be extracted from the file into memory.
These two approaches will be the bases of the methods used in this project,
and therefore OpenSlide makes up the first part of the pipeline.

12

3.3. DEEP LEARNING ARCHITECTURE 13

Figure 3.1: Visual representation of WSI layers in the Camelyon16 dataset.

3.3 Deep learning architecture

An overview the architectures used by different researchers for deep learn-
ing approaches to lymph node classification is given in section 2.2. The
architecture used in this project, shown in Table 3.1, is based on that used
by Ciompi et al. (2017) in their work evaluating the effectiveness of stain
normalisation on tissue classification.

7 weight layers
conv5-32MPconv5-64MPconv3-128MPconv3-256MPconv9-1024conv1-512SM

Table 3.1: The neural network structure used in this project, based on
Ciompi et al. (2017). MP = max pooling layer, SM = softmax layer.

Ciompi et al. based this architecture on work by Simonyan and Zisser-
man (2014), who showed that by having more layers with a smaller filter
size, higher discrimination with less parameters can be achieved compared
to fewer layers with a larger filter size. The architecture consists of 11
layers, alternating convolutional layers with max-pooling layers, except for
between the last two convolutional layers. The final layer in the architecture
is a softmax layer which gives a probability for each class.

The convolutional layers use rectified linear unit (ReLU) activation. The
first layer has 32 filters, with the number of filters doubling for each convo-

14 3. SPECIFICATION AND DESIGN

lutional layer. The filters are of size 5 in the first two convolutional layers,
with size 3 in the third and fourth, size 9 in the fifth layer and size 1 in
the final layer. This was chosen because Ciompi et al. attained an accu-
racy of 93.8% at classifying tissue types within a 150 ⇥ 150 pixel patch.
The architecture uses the ADAM algorithm for updating parameters during
training.

3.4 Hardware

Training a machine learning model is most efficiently done when done using
graphics cards. In this project an NVIDIA GeForce RTX 2070 graphics
card was used, in an Ubuntu workstation from the Linux Lab of the Cardiff
University School of Computer Science (Abacws room 5.44). The OpenSlide
library referred to in section 3.2 could not be installed on that workstation
as this would require adminstrator rights. Therefore, generating training
data at training time, or during each epoch of training, as has been done
in some previous research (X. Wang et al. 2021), was not possible, and
training data had to be generated in advance of training.

3.5 Interface

The user interfaces with the system exclusively using the command line. If
this software were to be packaged into a commercial application, it would
be important to provide a graphical user interface, as pathologists may not
be used to working with the command line.

The patch-based classification approach can create a lesion level anno-
tation which can be imported into QuPath. This interface is user friendly
and familiar to pathologists.

3.6 Code structure

Many of the image processing elements, such as scaling, extracting patches
and applying stain normalisation, are needed in both the training and clas-
sification sections of the project. For this reason, the common code was put
into an image pipeline class. Other useful utilities such as a path handler
are contained within a utils module, so they can be accessed by all parts
of the program. The architecture of the machine learning model (shown in
Table 3.1) is given its own class within the models module. This is so that
the code can be loaded from both the trainer and classifier programs. It

3.7. WHOLE-SLIDE APPROACH 15

was initially planned to try several different architectures, but due to the
limited time available for this project, only one was implemented.

All code for this project was written in Python 3, as there are powerful
machine learning libraries available, such as the TensorFlow library which is
used in this project, and it has a convenient virtual environment to manage
all the libraries involved in the project. It also has an historical precedent
in this field of research, being the language used by X. Wang et al. (2021)
in their research into the use of deep learning to predict gastric cancer
outcome, although they used the PyTorch machine learning library.

3.7 Whole-slide approach

The training data for the whole-slide approach, generated from the image
pipeline, consists of 100 ⇥ 100 px images with the lymph node in the middle.
The edges are padded with white pixels. One problem of down-scaling the
slides and putting them within a square like this, is that it could lead to
most of the image being empty, such as in Figure 3.2. This is not such a
big problem for the data from the Head & Neck 5000 study, as the slides
are already cropped to only include the lymph node section. This cropping
is not perfect, as in some cases it has included logos or writing on the slides
that are not part of the lymph node. However, the Camelyon16 dataset is
not cropped like this, and so when they are scaled down a larger amount
of detail is lost than for the Head & Neck 5000 data. The annotation data
available for the Camelyon16 dataset only specifies the presence of lesions,
and so cannot be used to determine the lymph node section of the slides.
The approach to this problem taken by X. Wang et al. (2021) was to train
another neural network to locate the lymph node within the slide. It may
also be possible to use other computer vision techniques such as SIFT to
locate the lymph node area within the slide, however in this project no
solution to this issue was implemented. Therefore a difference in scale
between the training data and evaluation data will likely have an effect on
models using this approach in the evaluation.

The purpose of this approach can be seen as evaluating whether there
are significant enough structural differences at the whole slide level to allow
a neural network to differentiate between positive and negative nodes.

16 3. SPECIFICATION AND DESIGN

Figure 3.2: Left, maximum information retained due to smart cropping
(Head and Neck 5000). Right, unnecessary information loss (Camelyon16).

Figure 3.3: The flow of data through the system.

3.8 Patch-based approach

The patch-based approach to slide classification is more popular than the
whole-slide approach, as the input to the network can be at a low resolution
whilst still capturing important details from the slide. The first step in this

3.8. PATCH-BASED APPROACH 17

approach is to have WSIs which have been hand annotated by a pathologist
using a program such as QuPath or Aperio ImageScope. This annotation
process yields a file with coordinates describing one or more polygons within
the slide, and the classification for the tissue within each polygon. Then
patches can be extracted from the slides using the OpenSlide library and
labelled with the correct classification of either positive or negative. These
are then used by a neural network to train. This network can then be given a
patch from a slide it hasn’t seen before and return a predicted classification.
Chen et al. (2021) showed that the classification process can be spread up
considerably by ignoring all patches with RGB values larger than 220, as
these would likely be background. This will also be applied in this project.

Figure 3.4: An example of a positive tissue annotation provided with the
Camelyon16 dataset, displayed with QuPath.

Once every patch within a new slide has been classified by the model,
this can be converted into a new annotation file which can be provided to a
pathologist for review. This annotation would draw lines around the areas
in the slide that the model has classified as positive.

In Table 3.2 and Table 3.3, the uncompressed size of each layer in giga-
bytes is calculated like so:

Size (GB) =
width ⇥ height ⇥ 3

10243

18 3. SPECIFICATION AND DESIGN

Layer Ratio Resolution Size
0 1:1 97792 ⇥ 221184 px 60.43GB
1 1:2 48896 ⇥ 110592 px 15.11GB
2 1:4 24448 ⇥ 55296 px 3.777GB
3 1:8 12224 ⇥ 27648 px 0.9443GB
4 1:16 6112 ⇥ 13824 px 0.2361GB
5 1:32 3056 ⇥ 6912 px 0.05902GB
6 1:64 1528 ⇥ 3456 px 0.01475GB
7 1:128 764 ⇥ 1728 px 0.003689GB
8 1:256 382 ⇥ 864 px 0.0009221GB
9 1:512 192 ⇥ 438 px 0.0002350GB

Table 3.2: The pixel ratio and uncompressed size of WSI file layers in the
Camelyon16 dataset as read by OpenSlide. Layer 0 is scanned at 40⇥
magnification.

Layer Ratio Resolution Size
0 1:1 53784 ⇥ 52470 px 7.885GB
1 1:4 13446 ⇥ 13117 px 0.4928GB
2 1:16 3361 ⇥ 3279 px 0.03079GB
3 1:32 1680 ⇥ 1639 px 0.007693GB

Table 3.3: The pixel ratio and uncompressed size of WSI file layers for a
slide in the Head and Neck 5000 dataset as read by OpenSlide. Layer 0 is
scanned at 40⇥ magnification. Note that unlike the Camelyon16 dataset,
the resolution varies slightly from slide to slide. However, the magnification
and order of layers is consistent across the dataset.

and is given to four significant figures. The actual files are much smaller
than the numbers given in the tables, as the images are stored with com-
pression.

4 Implementation

4.1 Model architecture

For both the whole-slide and patch-based approaches, the network structure
shown in Table 3.1 was used. This structure was used by Ciompi et al.
(2017) with good results. The differences are that in this project the input
size is 100 ⇥ 100 px rather than 150 ⇥ 150 px, and the output is a 2
element vector rather than a 9 element vector. This is because the aim of
this project is to identify tumour tissue within a lymph node, whereas in
that work they classified all the types of tissue present in a slide taken from
a tumour.

In this project, the structure was implemented in Tensorflow using the
keras.Sequential class. The models were trained on their input data for
1000 epochs before being evaluated, and a batch size of 64 was used. Train-
ing was ended early in some instances where the loss metric of the model did
not change for three or more epochs. Different pre-processing steps (out-
lined in chapter 3) were applied to the data for different models, so that their
effect on the classification performance could be evaluated. In each case,
a validation split was used of 0.2, meaning that 20% of the training data
would be used for validation during training rather than for the training
itself. The metrics achieved during training can be found in Appendix B.
The code for the architecture is available in models/second_model.py.

As mentioned in section 2.4, data augmentation can be easily imple-
mented in Tensorflow using Keras layers. Three layers were used: layers.RandomFlip,
layers.RandomRotation and layers.RandomZoom. These layers flip the
input with a random probability, rotate the input by a random amount
(between 0 and 1⇡ radians clockwise or anti-clockwise) and zoom the input
in or out by a random amount between 0 and 100%. Bilinear interpolation
is used, and any blank space is filled by reflecting the input about the edge.
The data augmentation layers do not activate when the model is being used
for classification.

The data augmentation layers were implemented in utils/data_augmentation.py

19

20 4. IMPLEMENTATION

Figure 4.1: The process for generating training data for the whole-slide
approach.

so that the same augmentation could be used by multiple architectures, al-
though in the end only one architecture was used. Keras offers additional
augmentation such as layers.RandomBrightness, layers.RandomContrast
and layers.RandomTranslate, which were not used in this project.

4.2 Image pipeline

As mentioned in chapter 3, loading the WSI into memory at the highest
resolution is not feasible on the systems being used. Therefore, an image
pipeline was implemented in utils/image_pipeline.py. This loads the
third layer of the slide into memory. This layer is a down-sampled version
of the first layer and can easily be loaded. Then it is down-sampled further
to 100 ⇥ 100 px and saved as a PNG to be used as training data for a
model. The aspect ratio is maintained, and the image is padded with white
pixels to make it square, rather than being cropped. The image pipeline
also has a function to normalise the stains in a given image. This was used
to turn the datasets into training data for the whole-slide method.

4.3 Patch generators

Using patches at the full resolution / magnification (40⇥) would be too
slow to be practical, as a single slide from the Camelyon16 dataset would
yield 21,630,025,728 100 ⇥ 100 px patches, taking approximately 20 years

4.3. PATCH GENERATORS 21

for classification of all patches in a single slide. Since it was not practical to
use the full resolution, it made sense to use one of the lower resolution layers
in the image pyramid within each WSI file. 1

16 of the highest resolution
was chosen as a good balance between detail and time. In the Head and
Neck 5000 slides, this is the second layer in the image pyramid, while in
the Camelyon16 data set this was the fourth layer. For the Camelyon16
dataset, this now yields 8,418 100 ⇥ 100 px patches (minus any that are
thresholded), with an approximate time of 4 minutes to classify them all.

From the Head and Neck 5000 dataset, patches were extracted in the
following categories: positive tissue, negative tissue, and background. The
first of these was much scarcer than the others, therefore, undersampling
was employed, i.e., from each slide used for patch generation, all positive
patches were extracted, whilst only some of the negative and background
patches were extracted. During training, the negative tissue and back-
ground patches were combined into a single class called negative, with 50%
of those patches taken from the negative tissue and 50% taken from the
background. The patch training data extracted from the Head and Neck
5000 dataset consisted of 1,626 positive patches and 1,626 negative patches
(813 taken from negative tissue and 813 taken from the background). When
extracting normalised patches, however, these numbers decreased as some
patches returned an error message. This is described in section 4.10. There-
fore, when training with the normalised data from the Head and Neck 5000
dataset, there were 810 positive patches and 810 negative patches (405 from
negative tissue and 405 from background).

When it came to extracting patch data from the Camelyon16 dataset,
the annotations only showed the locations of lesions (positive tissue) within
the slide, therefore it was not possible to discriminate between negative
tissue and background to ensure that they both had adequate representation
within the dataset. In an attempt to make sure that the negative patch
dataset was balanced, the negative samples were taken starting from the
middle of the slide. This accounts for the fact that the top left of a slide is
almost guaranteed to be empty. The data extracted from the Camelyon16
dataset consitsed of 254 positive patches and 254 negative patches. When
extracting normalised patches, the numbers remained the same.

As mentioned in section 3.8, the patch classifying process can be signif-
icantly sped up by ignoring background patches. This is done by checking
the RGB values for every pixel in the patch and ignoring the patch if they
are all above a certain threshold. Chen et al. (2021) used 220 for this value,
but in this project that did not yield a good result, so it was lowered to
200.

To get training data from the slides for the patch-based method, two

22 4. IMPLEMENTATION

Figure 4.2: A 100 ⇥ 100 px patch from a slide before stain normalisation
(left) and after (right).

programs were implemented. This is because the method for obtaining
patches was different for the two datasets, as the Camleyon16 dataset did
not have negative tissue annotated. The program for extracting patches
from the Head and Neck 5000 dataset was annotation_to_polygon.py,
and the program for extracting patches from the Camelyon16 dataset was
generate_patches_camelyon.py. They both work in a similar way, load-
ing the slide using OpenSlide and reading in the provided annotation in
GeoJSON.

Since the annotations for the Camelyon16 dataset were provided in XML
format, the program xml_to_geojson.py was written which converts these
into GeoJSON annotations which can be used by the rest of the program.
Then the program iterates over each patch of the slide and uses the Shapely
library to check if the patch falls within a positive annotation polygon, and
then saves the patch in the appropriate directory. The program has a binary
constant which determines if the output should have the stains normalised
or not.

4.4 Trainer

The program trainer.py creates a model based on the architecture, loads
the training data provided into batches and trains the model for 1000
epochs, saving it to a specified checkpoint folder after each one. To control
the use of data augmentation, the augmentation layer can be commented
out in the model file.

4.4. TRAINER 23

Figure 4.3: Diagram showing how the data sources interact with the pro-
grams implemented.

24 4. IMPLEMENTATION

4.5 Classifier

The program classify.py takes as arguments an input file or directory,
input size and Y/N for stain classification. It loads the model weights from a
checkpoint specified by the config file, which also tells it if it should operate
in patch-based mode or whole-slide mode. These two methods of operation
are outlined below.

4.5.1 Whole-slide

When classifying a single WSI in whole-slide mode, the classifier will return
a label (positive or negative) and a confidence for that label from 0 to 100%.
When classifying a directory of WSIs classifies every file within that direc-
tory, creating as it does so a list of which is positive and which is negative,
as well as a confidence score for each classification. The program separately
tracks the correct label for each input, and at the end will provide the user
with information for evaluation purposes, such as the overall accuracy, the
sensitivity and the specificity. The confidence values are output which allow
for the calculation of AUC as described in section 4.6.

4.5.2 Patch-based

For the patch based classification, the system outputs a classification mask
PNG, such as that shown in Figure 4.4. Each pixel in this mask represents
a 100 ⇥ 100 px patch in the slide at the specified level. The pixel’s colour
value is used to represent the confidence of the system, with the red value
corresponding to negative and the green value corresponding to positive.
Therefore a pixel with value (83, 17, 0) would correspond to a patch that
the model classified as negative with 83% confidence. If the patch has been
thresholded due to having no RGB values lower than 200, the patch is
represented with a black pixel (0, 0, 0). This mask can be used to generate
a GeoJSON file which can be imported as an annotation into QuPath.
The ground truth annotation can also be turned into a mask PNG by the
program generate_truth.py, and then the program evaluate_mask.py

can use the pairs of masks to calculate the accuracy, sensitivity, specificity
and AUC and output these to the console for the purposes of evaluation.

4.6. EVALUATION 25

4.6 Evaluation

As mentioned above, some of the evaluation for the whole-slide method is
handled by the classifier program. The exception to this is the AUC which is
calculated by the program calculate_auc.py. This takes the confidences
of a model for each slide, and the true value for each slide, and calculates
the AUC based on those values using tf.keras.metrics.AUC().

To evaluate the patch-based method more programs were required. The
program generate_truth.py takes as input a WSI and a GeoJSON anno-
tation file for that WSI, and produces a PNG mask where patches of 100
⇥ 100 px of positive tissue are coloured (0, 100, 0) and patches that are
negative are coloured (100, 0, 0). An example of this is given in Figure 4.4.
The truth mask can then be given to the program evaluate_mask.py along
with the confidence mask given by classify.py for the same slide, and it
will return a reciever operating characteristic (ROC) graph, AUC, accuracy,
specificity and sensitivity for the model on the input. It can also receive a
list of slides to evaluate.

The program flock_eval.py takes the confidences for a lists of models
on a list of slides, as well as the truth values for those slides or the patches
within them (depending on which method is being evaluated). It returns
a ROC graph, AUC, accuracy, specificity and sensitivity for the flock of
models on the data provided.

4.7 Annotation generator

The mask PNG output by classify.py can be turned into a GeoJSON
annotation file using the program mask_to_annotation. This draws a box
around every patch that was classified as positive tissue. An example of
this annotation can be seen in Figure 4.5, contrasted with a ground truth
annotation.

4.8 Data availability

The dataset provided by the Head & Neck 5000 study is not publicly
available, but contact details for the organisers of the study are available
here: http://www.headandneck5000.org.uk/contact-us/. The Camelyon16
dataset which was used for evaluation in this project is available here:
https://camelyon17.grand-challenge.org/Data/.

http://www.headandneck5000.org.uk/contact-us/
https://camelyon17.grand-challenge.org/Data/

26 4. IMPLEMENTATION

Figure 4.4: Left: whole slide image. Centre: binary ground truth mask
generated from GeoJSON annotation file, showing three lesions in green.
Right: confidence mask generated by patch classifier. The colours here are
boosted to the range 0–255 to make them easier to distinguish.

4.9 Code availability

The source code for this project is available at the following Github repos-
itory: https://github.com/marleysudbury/detect-diagnose-tumours/. The
trained models are not available. The stain normalisation code written by
Github user schaugf is available separately at https://github.com/schaugf/
HEnorm_python/blob/master/normalizeStaining.py.

4.10 Challenges

This section discusses challenges encountered during implementation which
have not already been addressed above.

The first challenge that arose in the implementation was using the WSIs
as training data. The first approach was to load the files directly into
Tensorflow, as can be done with PNGs, JPEGs and other image formats.
However, Tensorflow currently has limited and experimental support for
TIFFs, and it is required to load the data elsewhere and pass it to Tensorflow

https://github.com/marleysudbury/detect-diagnose-tumours/
https://github.com/schaugf/HEnorm_python/blob/master/normalizeStaining.py
https://github.com/schaugf/HEnorm_python/blob/master/normalizeStaining.py

4.10. CHALLENGES 27

Figure 4.5: Using the annotation file generated by the program, it is possible
to compare the patches it has classified as positive (blue) with the ground
truth of which tissue is actually positive (red).

either as a Numpy array or as a PNG. To do this, the Pyvips library was
used, as it supports multi-layer TIFFs, such as the WSIs.

When it came to implementing the patch-based approach, however,
Pyvips was not capable. This is because it does not allow the loading of a
patch from the WSI, and loading the whole image into memory and crop-
ping it down was not feasible due to the size of the images. To resolve this
challenge, the OpenSlide library was used, which was capable of extracting
patches from the layer without loading the whole thing into memory.

Introducing the OpenSlide library brought another challenge—it is not
compatible with the Pyvips library. This is because the Pyvips library in-
cludes some of the functionality from OpenSlide, meaning that the names-
pace contains clashes. This meant that the implementation for the patch-
based approach had to be revisited and altered.

28 4. IMPLEMENTATION

With the patch-based approach, during training the error “Unknown

image file format. One of JPEG, PNG, GIF, BMP required.” was
encountered, even though the input data was in PNG format. This was
caused by a single image file that was corrupted in the training data. This
file was located and deleted by iterating over all of the files and using the
verify() method from the Python imaging library (PIL) (it could not be
located manually due to the large number of files, and due to the file being
hidden). Once the file was deleted, the model trained as expected.

There was a further error with the patch-based approach when it came to
generating and classifying normalised patches. The normalisation software
would return an error messages for some of the patches given to it. These
error messages were LinAlgError: Eigenvalues did not converge and
RuntimeWarning: overflow encountered in exp. As this occurred late
in the project, and the implementation was done by others, this issue was
unable to be resolved. In instances where the code is not able to normalise
the patch, it is treated the same as if it was filtered by the RGB threshold.
If that leads to positive patches being skipped over during classification,
that is reported to the user during evaluation, and reported in chapter 5.

A challenge which came about as a result of the cross-evaluation be-
tween the two datasets was that they did not have the same layers. In
the Camelyon16 dataset, as shown in Table 3.2, the layers go 40⇥, 20⇥,
10⇥, etc., whilst in the Head and Neck 5000 dataset (Table 3.3) there is no
20⇥ layer or 5⇥ layer. This meant that to access the same scale in both
datasets, the index had to be manually chosen. This was only significant for
the patch-based method, as the whole-slide method down sized the images.
Alternatively, it would have been possible using OpenSlide to calculate the
correct index for the desired scale, but this was not considered a good use
of time since there were only two datasets. If there were additional datasets
with varying scales, then it would be sensible to implement that.

5 Results and evaluation

During evaluation, the default classification threshold used to generate the
accuracy, specificity and sensitivity is 0.5. When calculating the AUC, 100
thresholds are used from 0.0 to 1.0. If Inputn is Yes, then the results are of
the model classifying inputs which have had stain normalisation applied.

In this project, cross-evaluation is used to see to what extent the learn-
ing of the networks is transferable between datasets. Information on the
datasets used can be found in section 2.3. Where a model is trained on the
Head and Neck 5000 data, it is denoted as ↵, and where it is trained on
the Camelyon16 data, it is denoted as �. Where the patch-based method
was used rather than the whole-slide method, a p will be used. Where data
augmentation was used in the training process (see section 2.4), the model
name will have an a. Where the training data has had stain normalisation
applied, the model name will have a n.

The AUC of each model is calculated by the tf.keras.metrics.AUC()

method from Tensorflow, which recieves as arguments a list containing the
confidences generated by the model for each image and a list of the correct
values (for both lists 0 represents 100% confidence that the input is negative,
and 1 represents 100% confidence that it is positive). The AUC refers
to the area under the ROC, a curve which plots the true positive rate
(TPR) against the FPR (1 - true negative rate (TNR)) at various confidence
thresholds. An AUC of 0.5 would be equivalent to a model which decides
the classification label by tossing a coin. According to Mandrekar (2010),
an AUC of 0.7–0.8 is acceptable, 0.8–0.9 is excellent and more than 0.9 is
outstanding. It is useful to look at the performance of an image classifier in
terms of its AUC because it is threshold invariant. If a model is very good
at classifying, but only when the threshold is something different from 0.5,
such as 0.3, this will be reflected in a good AUC, whilst the model may give a
bad accuracy, specificity or sensitivity. In these cases, an optimal threshold
can be calculated using the ROC using for example the method described
by Hong (2009), although this was not done as part of this project.

29

30 5. RESULTS AND EVALUATION

5.1 Whole slide approach

The results for all models using the whole-slide method are shown in Ta-
ble 5.1. ↵ models were trained on 103 slides from the Head and Neck 5000
dataset (60 positive and 43 negative). � models were trained on 100 slides
from the Camelyon16 dataset (50 positive and 50 negative). They were
evaluated each other’s training data.

Model Inputn AUC Accuracy Specificity Sensitivity
↵ No 0.659 63% 70% 56%
↵ Yes 0.645 63% 58% 68%
� No 0.595 73% 33% 78%
� Yes 0.521 52% 49% 54%
↵a No 0.719 69% 92% 46%
↵a Yes 0.710 64% 88% 40%
�a No 0.589 52% 57% 48%
�a Yes 0.439 42% 75% 18%
↵n No 0.540 54% 100% 8%
↵n Yes 0.540 54% 100% 8%
�n No 0.678 63% 16% 96%
�n Yes 0.606 62% 11% 98%
↵an No 0.686 67% 88% 46%
↵an Yes 0.727 71% 64% 78%
�an No 0.738 63% 13% 98%
�an Yes 0.695 64% 15% 98%

Table 5.1: Results for different models using the whole-slide approach.

5.1.1 Dataset comparison

↵ models on average scored an AUC of 0.65325, whilst � models scored
an average of 0.607625. When the models are paired up so that each ↵
is paired up with the � which has the same features, ↵ outperforms � in
terms of AUC in 5 out of 8 instances. Therefore it seems that the Head and
Neck 5000 dataset leads to slightly better performance in this area, but the
difference is not large.

5.1. WHOLE SLIDE APPROACH 31

Model AUC Accuracy Specificity Sensitivity
↵ 0.65325 63% 83% 44%
� 0.607625 59% 34% 74%

Table 5.2: Averages for the two datasets using the whole-slide approach.

5.1.2 Stain normalisation only

Table 5.3 shows that across all whole-slide method models, use of stain
normalisation has a very minor effect on the accuracy, with the exception
of when models are trained without stain normalisation but tested on data
that has had stain normalisation applied. In that case, there is a 9% drop
in accuracy compared to no normalisation at all. This suggests that there is
a large difference between the ordinary datasets and their stain normalised
counterparts, whilst there is not a large difference in the staining between
the two datasets. These results do not match what was shown by Ciompi et
al. (2017), who found that apply stain normalisation in testing and training
gave an accuracy of 79.66% compared to 50.96% with no stain normalisation
at all. Of course, the effect of stain normalisation will be dependent on the
differences in staining between the datasets.

Training with SN Training without SN
Testing with SN 63% 55%

Testing without SN 62% 64%

Table 5.3: Average accuracy from training and testing with and without
stain normalisation (SN).

↵an ↵a

Testing with SN 71% 64%
Testing without SN 67% 69%

Table 5.4: ↵a accuracy from training and testing with and without stain
normalisation (SN).

5.1.3 Data augmentation only

In the models without data augmentation there is a generally poor per-
formance, which can be attributed to overfitting to the training dataset.
Across all models, adding data augmentation leads to an increase in AUC

32 5. RESULTS AND EVALUATION

of 0.064875. However, this effect seems to be greater in ↵ models, which
had an increase of 0.1145, whilst � models only saw an increase of 0.01525.
Since the cropped images from the Head and Neck 5000 dataset generally
contain more information than those from the Camelyon16 dataset, the
data augmentation process will be more effective for ↵ models, as the aug-
mentation methods used cannot add information that is missing, but can
alter existing information.

5.1.4 Stain normalisation and data augmentation

The results so far suggest that stain normalisation has a negligible ef-
fect, whilst data augmentation has a large effect, particularly on ↵ models.
Models with both stain normalisation and data augmentation achieved an
AUC improvement of 0.1205 compared to stain normalisation alone, and of
0.09725 compared to data augmentation alone. Therefore, it is clear that
combining both of these techniques is key to making the best classifier.

5.1.5 Overall winner

The best performing model for the whole-slide approach in terms of AUC
only, was �an, with 0.738 on non normalised input data. However, this
model has a specificity of 13% and a sensitivity of 98%, which shows that it
has a large bias towards positive classification. It is therefore not a useful
classifier, which is unsurprising because it exhibited signs of overfitting dur-
ing training, where it had a validation accuracy of only 0.5500 (Table B.1).
The next highest AUC was ↵an with 0.727 on normalised input data. This
model seems to be more well rounded, with a specificity of 64% and a sen-
sitivity of 78%. This result reinforces the suggestion in chapter 3 that the
patch-based training data generated from the Head and Neck 5000 dataset
retains more useful information than that generated from the Camelyon16
dataset, as a result of the slides being cropped to include only the important
information.

5.2 Patch-based approach

The results for all models using the patch-based method are shown in Ta-
ble 5.5. The ↵ models not trained on stain normalised data were trained on
3,252 patches (1,626 positive and 1,626 negative) generated from 10 slides
in the Head and Neck 5000 dataset, whilst the ↵n models were trained
on 1,620 patches (810 positive and 810 negative) generated from the same

5.2. PATCH-BASED APPROACH 33

Figure 5.1: ROC of ↵an on normalised data, with an AUC of 0.727.

slides. The � models were trained on 508 patches (254 positive and 254
negative) taken from 10 slides in the Camelyon16 dataset.

The patch-based approach can be evaluated by comparing the label
given for each patch to the annotation provided with the dataset. As with
the whole-slide approach, the confidence values given by the model can be
used to calculate the AUC for the various patch-based models.

Since the purpose of this system is to identify metastases within lymph
nodes, it is not relevant to evaluate the performance of it on differentiating
negative lymph node tissue from background. Furthermore, it would not
be possible to evaluate that performance as the Camelyon16 dataset only
provides annotations for positive tissue (lesions). This means that a binary
ROC will be used for this as well.

When evaluating this approach, cross-evaluation between the datasets
is again employed. Each model is tested on every patch from 10 positive
annotated slides from the other dataset. The evaluation metrics, such as ac-
curacy, are given for the classification of patches. The system as it currently
stands does not make a conclusion for a given slide based on its predictions
for the patches within the slide.

As mentioned in chapter 3, X. Wang et al. (2021) employed an RGB
threshold to filter out background patches when classifying. In this project,
the threshold was set at 200. When testing the ↵p models, this lead to 18

34 5. RESULTS AND EVALUATION

Model Inputn AUC Accuracy Specificity Sensitivity
↵p No 0.477 80% 80% 76%
↵p Yes 0.633 50% 50% 74%
�p No 0.501 52% 99% 1%
�p Yes 0.356 44% 86% 7%
↵pa No 0.392 92% 93% 2%
↵pa Yes 0.456 79% 80% 4%
�pa No 0.532 56% 84% 26%
�pa Yes 0.534 49% 87% 15%
↵pn No 0.500 2% 0% 100%
↵pn Yes 0.544 6% 5% 100%
�pn No 0.504 52% 99% 2%
�pn Yes 0.496 47% 95% 4%
↵pan No 0.617 90% 90% 67%
↵pan Yes 0.890 79% 79% 75%
�pan No 0.683 71% 76% 65%
�pan Yes 0.469 60% 79% 43%

Table 5.5: Results for different models using the patch-based approach.

positive patches being ignored due to the RGB threshold, whilst 13 positive
patches were ignored due to errors in the normalisation code. When testing
the �p models, the RGB filter lead to 53 positive patches being ignored,
whilst 27 patches were ignored due to normalisation errors.

5.2.1 Dataset comparison

↵p models had an average AUC of 0.563625, whilst �p models had an average
AUC of 0.509375. This difference in performance can be attributed to
the larger training dataset used for the ↵p models. When the models are
paired up so that each ↵p is compared to the �p with the same features, ↵p

outperforms �p in 3 of the 8 instances.

5.2.2 Stain normalisation only

Unlike in subsection 5.1.2, using the patch-based method the results indi-
cate that stain normalisation has a negative impact on the ability to classify.
The average accuracy of patch-based models with stain normalisation (SN)
on training and testing data was 48%, compared to 70% for models with no
stain normalisation. Despite this trend, the best performing model (subsec-

5.3. WISDOM OF CROWDS 35

tion 5.2.5) employed stain normalisation on both training and testing data.
This suggests that while stain normalisation is an important element, it is
only useful in a model which is good.

Training with SN Training without SN
Testing with SN 48% 56%

Testing without SN 54% 70%

Table 5.6: Average accuracy from training and testing with and without
SN in the patch-based method.

5.2.3 Data augmentation only

Patch-based models without data augmentation achieved an average AUC
of 0.501375, whilst those with data augmentation achieved an average AUC
of 0.571625. �p, ↵pn and �pn show particular signs of overfitting, although
↵pa does as well, despite using data augmentation. The best performing
model does use data augmentation (subsection 5.2.5).

5.2.4 Stain normalisation and data augmentation

Patch-based models with both stain normalisation and data augmentation
achieved an average AUC increase of 0.18625 compared to stain normali-
sation alone, and of 0.15375 compared to data augmentation alone. They
achieve an average AUC increase of 0.173 compared to models with neither
stain normalisation or data augmentation.

5.2.5 Overall winner

With an AUC of 0.890 on normalised input data, ↵pan far exceeds the
performance of any other model created in this project. It beats the second
highest AUC from a patch-based method (�pan on non-normalised data) by
0.207, and it beats the best whole-slide method (↵an on normalised data)
by 0.107.

5.3 Wisdom of crowds

This section is inspired by the work of Levenson et al. (2015), who showed
not only that pigeons can be trained to classify pathology and radiology
images of breast cancer, but that when voting as a flock they can achieve

36 5. RESULTS AND EVALUATION

Figure 5.2: The average AUC of patch-based models by features.

Figure 5.3: ROC of ↵pan on normalised data, with an AUC of 0.890.

5.3. WISDOM OF CROWDS 37

an AUC of 0.99, surpassing any of the individual pigeon’s ability. Below
are the results of applying this ‘flock-sourcing’ to the models created in this
project.

The method for reaching the flock score is as follows: the sum of clas-
sifications from each model for each stimulus are taken, where positive is 1
and negative is 0. This is then divided by the number of models to give a
flock confidence. A flock confidence of 0 would mean that all models said
the stimulus was negative. A confidence of 1 would mean that they all
said it was positive. The resulting number can be used to calculate accu-
racy, specificity, sensitivity and AUC as was done for the individual models.
These values are given in Table 5.7.

Method AUC Accuracy Specificity Sensitivity
↵ 0.758 63% 92% 34%
↵p 0.725 88% 89% 35%
� 0.587 75% 36% 95%
�p 0.649 52% 99% 1%

Table 5.7: Flock results for the two methods.

The flock achieves a better AUC than the individuals for ↵ models.
However, for ↵p, � and �p models there were individuals who performed
better than the flock. The reason that this does not match the effect ob-
served by Levenson et al. is that in that experiment all of the classifiers
(pigeons) were on roughly equal footing, whereas here each flock contains
classifiers that are deliberately lacking features, and therefore have been
shown to be worse.

6 Future work

It is common in machine learning to think that more data leads to greater
accuracy, and indeed many well performing solutions to this problem have
used larger datasets than were used in this project. Therefore, future work
should involve larger datasets. However, in the case of WSIs it must be
remembered that the size of the data is very large. Therefore, the training
and classification processes would need to be more efficient before using
more data becomes practical.

The patch based approach took approximately 5.5 minutes to diagnose
every patch of the slide. This process is parallelisable, and doing so would
yield an improvement to the run time. Doing this would also make it
more practical to use patches from a higher zoom level, which would likely
increase the accuracy of the system. Additionally, if this process was sped
up it could allow for a “sliding window” approach, which would give a label
to each pixel in the input rather than a label to every 100 ⇥ 100 px patch.

As mentioned in chapter 2, research has been done on using unified
memory techniques to train neural networks on the the whole slide at a
much higher scale than was used in this project. Future work on classifying
lymph nodes should certainly explore if it is possible to achieve good results
with with this technique, since research by Chen et al. (2021) has shown it
can be highly successful at classifying types of lung tumour.

The stain normalisation method proposed by Macenko et al., and de-
scribed in section 2.5, has two important variables, ↵ which determines the
percentiles used to find the optimal colour vectors, and � which determines
the minimum OD required for a pixel to be normalised. In this project, the
default values of ↵ = 1 and � = 0.15 recommended in the paper were used,
but it is possible that in future work better suited values for this task could
be found.

A wide variety of deep learning architectures have been used to approach
this problem and related problems with success, and it was initially planned
to implement and evaluate several different architectures. However, due
to the limited time available in this project, only one was implemented.

38

39

Future work should explore if better results can be achieved by using a
different architecture, in particular by using ResNet-50 which was discussed
in section 2.2 and was used by both X. Wang et al. and Chen et al.

Future work should also explore more methods of data augmentation
than those that were used in this project. For example, Chen et al. (2021)
used colour augmentation methods such as randomising contrast, bright-
ness, hue and value

The weights in the neural network architectures used in this project were
all initialised randomly, as is the default mode of operation in Tensorflow.
This lead to some situations where networks didn’t learn effectively, and
the process needed to be restarted. This could be avoided by using a smart
initialisation method, such as the method proposed by He et al. (2015),
designed for use with ReLU activation.

During the evaluation for the patch-based method, only positive slides
were used as data, since these have both positive and negative patches to
classify. Future work should include experimentation to see if patch-based
models are more or less effective at classifying negative slides.

In addition to those carried out in chapter 5, there are other test which
could be carried out in the future. Firstly, the code produced was not
thoroughly tested, and therefore bugs may exist within the system that are
not handled and could result in crashes or incorrect results.

Secondly, evaluation of performance on a validation subset of the data
from the training dataset was not carried out. Therefore, it is not possible
to distinguish between a model which performed well on the training data
but did not generalise to the other dataset, and one which did not perform
well on any data at all. This means that we miss part of the whole picture
in terms of the effect of the different processes used. To get some idea
of this performance, please see the complete table of training results in
Appendix B.

7 Conclusions

The primary aim of this project was to build a system which could identify
metastasis in lymph nodes. To this end, it has been moderately successful,
whilst not achieving the performance of some other existing solutions listed
in section 2.2. Another aim was to identify the effect of data augmenta-
tion and stain normalisation on deep learning solutions to this problem,
which was observed to be significant, but not as prominent on average as
anticipated. A further aim was to evaluate the difference in performance
of the whole-slide and patch-based methods, and it was found as expected
that the patch-based method produced the best model as it had a lot more
information to work with.

The fact that the ↵ models largely outperform the � models suggests
that either the Head and Neck 5000 dataset has higher variability, making it
more generalisable, or that the Camleyon16 dataset was prone overfitting.
Of these, the second is the most likely, particularly for the patch-based
method. This is because the differences between the datasets are most
apparent at the whole-slide level, where one is cropped and the other is not,
and also because researchers such as X. Wang et al. (2021) have managed
to achieve high transferability between tissue classifiers from one dataset to
another using a patch-based approach.

The results of the whole-slide approach suggest that there are some
differences between metastatic and normal lymph nodes when viewed at
a scale of 100 ⇥ 100 px that a computer can pick up on, however these
are only enough to achieve an AUC of 0.727, and therefore there is likely
not enough information conveyed in such as small resolution for this to
be usefully be applied. The principle of whole-slide classification is good
in that an annotation-free approach to training a tissue classifier reduces
the workload of pathologists who would have to otherwise painstakingly
produce the annotations by hand, and it also allows for the possibility of the
machine picking up on differences which may be missed by a human. Chen
et al. (2021) showed that with a significantly higher resolution of input, and
the necessary computational power, this principle can be applied with even

40

41

higher accuracy than a patch-based approach.
A higher AUC was achieved using the patch-based method, of 0.890,

however this was only the case with one particular model: ↵pan. This model
employed both data augmentation and stain normalisation, and compared
to �pan it had a significantly higher amount of training data. As can be
seen by comparing this result to Table 2.1 in chapter 2, ↵pan achieved 0.08
more AUC than the mean of 11 pathologists with a time constraint reported
by Ehteshami Bejnordi et al. (2017). It also had 12.2% higher sensitivity,
although it had 19.5% less specificity. This shows that the model is compa-
rable with the performance of people under time pressure, however it comes
nowhere close to the 0.966 AUC of a pathologist without time constraint
reported in the same paper. The model also took a longer amount of time
than the pathologists, who took an average of 120 minutes to diagnose 129
slides (1.075 minutes per slide), whilst ↵pan took 55 minutes to diagnose 10
slides (5.5 minutes per slide).

The fact that the patch-based methods in general did not perform better
than the whole-slide methods, indicates that either there was insufficient
training data used to capture the variation that occurs in unseen data, or
that too much data was being lost due to the down-scaled resolution. The
data used in the patch-based methods of this project was taken from a
low-resolution layer of the slide, where the width and height are both 1

16 of
their full size. Some investigation was carried out into taking the data at
a higher resolution, where the width and height are 1

4 of their original size,
which can be found in Appendix A. An AUC of 0.806 was achieved by one
model, with the rest performing slightly above or below 0.5.

It is clear from the results obtained in this project that stain normalisa-
tion does indeed have an effect. The highest performing models were where
the training and testing data both had stain normalisation applied. On av-
erage across all models, those with no stain normalisation at all scored an
AUC of 0.558, whilst those with stain normalisation on either the training
data or the testing data, but not both, scored an AUC of 0.5775, and those
with stain normalisation applied to both had an AUC of 0.620875.

As expected, data augmentation lead to more robust systems. This is
because the models that did not have data augmentation during training
were overfitting to the training dataset, and were exposed to less variation.
On average across all models, those without data augmentation scored an
AUC of 0.549688, whilst those with data augmentation scored an AUC of
0.61725.

8 Reflection

Coming into this project, I had made the naïve assumption that using a
small input size, a neural network with enough training would still be able
to discriminate between positive and negative tissue samples. This assump-
tion came from having implemented an image classifier which was capable
of determining the species of a flower from only a 100 ⇥ 100 px image, as
well as a lack of understanding of the diagnosis process, and a lack of ex-
posure to the slides. However, this assumption is completely inappropriate
as there are far fewer low-frequency distinguishing characteristics between
metastatic and non-metastatic lymph node tissue samples than between
different flowers. This fundamental misunderstanding meant that much of
the early work on this project was spent exploring avenues which did not
lead anywhere, although as shown in chapter 5 there is some capability
to distinguish at low resolutions, albeit at a less than acceptable rate of
success. I now understand that there is not a one-size fits all approach to
image classification, and that a thorough understanding of what the data is
and what parts of it are important is required before setting out to design
a system which can tackle the problem.

My initial planning for this project proved to have been too optimistic
in terms of the timescale. This is because I underestimated the challenge
that would be posed by the size of the WSIs (see chapter 4) and by the
evaluation. As a result of this, I had to construct additional features that I
did not originally plan. I also found that being limited to lab opening times
to carry out model training made it difficult to manage my time effectively
at some points of the project.

I have learned a lot about machine learning, which I had studied during
my time at university but never used before. I also gained a lot of knowledge
about processes, techniques and tools used in pathology. Another thing that
I have developed during this project is the ability to understand and explore
a topic from scratch independently.

If I were to do this project again, I would approach it differently as a
result of the knowledge I have gained. I would take more time at the start to

42

43

understand the solutions put together by others for similar problems, and to
carefully plan out my approach to creating a solution, rather than running
straight into it and getting lost amongst the practical challenges outlined
elsewhere in this report. I would also ensure that I was more organised
with the different models created and evaluations carried out, as towards
the end of the project I had to retrain and reevaluate several models due
to inconsistencies in the training and evaluations carried out, which added
to the pressure of time. Another thing which added to the time pressure
was the lack of access to the labs in the evenings and weekends. To avoid
this, cloud computing would be the best option, although that may not
have been possible in this particular case due to the requirement to keep
the Head & Neck 5000 dataset on a password encrypted hard drive.

The timeline of work completed on this project ended up looking quite
significantly different from the timeline I set out in my initial plan. The
only thing which wasn’t completed from that initial plan was “Implement
non deep learning approach to tumour detection and diagnosis”, which was
not done as there wasn’t enough time to explore this. There was also some
work done which was not included in the initial plan, as at the time I did
not know it would be required.

Although notes were taken throughout the project, the report writing
only started towards the end, and later than planned in the initial plan. If I
were to do this project again, I would start writing the report earlier, as in
the process of writing and putting everything together I found that a lot of
good ideas occurred to me which would have been more useful if they had
happened earlier in the project. By starting the writing process earlier, it
would also avoid it having been so rushed, which in turn would have likely
meant a better end product.

I really enjoyed this project, and I hope to utilise the skills and knowl-
edge developed throughout it to do more work in the crossover area of heath
care and computer science.

Table of abbreviations

AUC area under the receiver operating characteristic curve

CNN convolutional neural network

FNR false negative rate

FPR false positive rate

GAP global average pooling

GMP global max pooling

H&E hematoxylin and eosin

MIL multiple instance learning

OD optical density

PIL Python imaging library

ReLU rectified linear unit

ROC reciever operating characteristic

SN stain normalisation

SVD single value decomposition

TNR true negative rate

TPR true positive rate

WSI whole slide image

44

A Higher resolution patches

There was not time in this project to fully explore or evaluate the patch-
based method at higher resolutions, where it is likely to perform better.
This is because using a higher resolution means there are more patches to
be classified in each slide, taking longer to evaluate. To give some hint of
the potential that this way lies, some models were trained on Camelyon16
patches from layer 2 (1:4). These are denoted as �p 1

4
. These models were

trained on 10,320 patches (5,160 positive and 5,160 negative) taken from 10
slides in the Camelyon16 dataset. They were evaluated on 45,499 patches
(24,405 positive, 21,094 negative) from 1 slide in the Head and Neck 5000
dataset. The results are shown in Table A.1. The results may not be
reflective of a comprehensive performance, as the slide used for evaluation
had an unusually high tumour to metastatic lymph node ratio, with a very
small amount of normal tissue.

Method Inputn AUC Accuracy Specificity Sensitivity
�p 1

4
No 0.476 29% 89% 5%

�p 1
4

Yes 0.459 39% 49% 36%
�p 1

4a
No 0.806 78% 73% 81%

�p 1
4a

Yes 0.507 49% 69% 42%
�p 1

4n
No 0.521 34% 96% 9%

�p 1
4n

Yes 0.569 40% 96% 21%
�p 1

4an
No 0.583 49% 95% 31%

�p 1
4an

Yes 0.501 26% 99% 0%

Table A.1: Results of partially tested high-res patch-based method.

The model �p 1
4a

achieved a good AUC of 0.806 on non-normalised input
data, however the rest of the models performed poorly despite having high
accuracy on the training and validation data (Table B.2). These results

45

46 APPENDIX A. HIGHER RESOLUTION PATCHES

Figure A.1: ROC of �p 1
4a

on non-normalised input. AUC of 0.806.

could perhaps be improved by increasing the input size and increasing the
number of slides used to generate the training data.

B Loss and accuracy of models

on training and validation data

Model Loss Accuracy Validation loss Validation accuracy
↵ 5.7450e-08 1.0000 2.1773 0.8000
↵p 0.0030 0.9996 1.1914 0.8723
↵a 0.2271 0.8675 0.2899 0.8500
↵n 2.7289e-08 1.0000 1.3923 0.8000
↵pa 0.2757 0.8939 0.2861 0.9015
↵pn 0.6840 0.5139 0.6846 0.5093
↵an 0.1988 0.9277 0.6965 0.9500
↵pan 0.2214 0.9151 0.4364 0.8519
� 6.3628e-07 1.0000 0.5715 0.9500
�p 2.5189e-07 1.0000 2.3103e-05 1.0000
�a 0.4038 0.8125 1.0139 0.6000
�n 5.0664e-08 1.0000 5.3902 0.5500
�pa 0.0141 0.9975 0.0108 1.0000
�pn 8.5179e-06 1.0000 3.5844e-05 1.0000
�an 0.2925 0.8875 2.3814 0.5500
�pan 0.0770 0.9803 0.0584 0.9802

Table B.1: Training and validation metrics for each model from the final
epoch.

47

48
APPENDIX B. LOSS AND ACCURACY OF MODELS ON TRAINING

AND VALIDATION DATA

Model Loss Accuracy Validation loss Validation accuracy
�p 1

4
3.4059e-05 1.0000 2.2133e-05 1.0000

�p 1
4a

0.0704 0.9746 0.1315 0.9540
�p 1

4n
1.5171e-05 1.0000 0.0010 0.9995

�p 1
4an

0.0526 0.9821 0.2796 0.9104

Table B.2: Training and validation metrics for the models referenced in
Appendix A, from the final epoch.

References

Babenko, B. 2008. Multiple Instance Learning: Algorithms and
Applications. Available at:
http://vision.ucsd.edu/~bbabenko/data/bbabenko_re.pdf [Accessed:
17 May 2022].

Cancer Research UK. 2020. How cancer can spread. Available at:
https://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-
cancer-can-spread [Accessed: 25 April 2022].

Cancer Research UK. Head and neck cancers statistics. Available at:
https://www.cancerresearchuk.org/health-professional/cancer-
statistics/statistics-by-cancer-type/head-and-neck-cancers#heading-
One [Accessed: 6 May 2022].

Chen, C.-L. et al. 2021. An annotation-free whole-slide training approach
to pathological classification of lung cancer types using deep learning.
Nature Communications 12(1193), doi: 10.1038/s41467-021-21467-y.

Ciompi, F. et al. 2017. The importance of stain normalization in colorectal
tissue classification with convolutional networks. 2017 IEEE 14th
International Symposium on Biomedical Imaging (ISBI 2017).

Ehteshami Bejnordi, B. et al. 2017. Diagnostic Assessment of Deep
Learning Algorithms for Detection of Lymph Node Metastases in
Women With Breast Cancer. JAMA 318, pp. 2199–2210. doi:
10.1001/jama.2017.14585.

Feldman, A. and Wolfe, D. 2014. chap. Tissue Processing and
Hematoxylin and Eosin Staining. In: Day, C. eds. Histopathology. New
York, NY: Humana Press. pp. 31–43.

Folmsbee, J., Johnson, S., Liu, X., Brandwein-Weber, M. and Doyle, S.
2019. Fragile neural networks: the importance of image standardization
for deep learning in digital pathology. Medical Imaging 2019: Digital
Pathology. Available at: https://doi.org/10.1117/12.2512992.

He, K., Zhang, X., Ren, S. and Sun, J. 2015. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification.

49

http://vision.ucsd.edu/~bbabenko/data/bbabenko_re.pdf
https://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-can-spread
https://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-can-spread
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/head-and-neck-cancers#heading-One
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/head-and-neck-cancers#heading-One
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/head-and-neck-cancers#heading-One
https://doi.org/10.1117/12.2512992

50 REFERENCES

2015 IEEE International Conference on Computer Vision (ICCV),
pp. 1026–1034. doi: 10.48550/ARXIV.1502.01852.

Hong, C. S. 2009. Optimal Threshold from ROC and CAP Curves.
Communications in Statistics - Simulation and Computation 38,
pp. 2060–2072. doi: 10.1080/03610910903243703.

Levenson, R. M., Krupinski, E. A., Navarro, V. M. and Wasserman, E. A.
2015. Pigeons (Columba livia) as Trainable Observers of Pathology
and Radiology Breast Cancer Images. PLOS ONE 10, pp. 1–21. doi:
10.1371/journal.pone.0141357.

Macenko, M. et al. 2009. A method for normalizing histology slides for
quantitative analysis. 2009 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pp. 1107–1110.

Mandrekar, J. N. 2010. Receiver Operating Characteristic Curve in
Diagnostic Test Assessment. Journal of Thoracic Oncology 5,
pp. 1315–1316. doi: 10.1097/JTO.0b013e3181ec173d.

NHS. 2019. Mouth cancer diagnosis. Available at:
https://www.nhs.uk/conditions/mouth-cancer/diagnosis/ [Accessed:
25 April 2022].

Simonyan, K. and Zisserman, A. 2014. Very Deep Convolutional Networks
for Large-Scale Image Recognition., doi: 10.48550/ARXIV.1409.1556.

Szegedy, C. et al. (2014). Going Deeper with Convolutions.
doi: 10.48550/ARXIV.1409.4842.
Available at: https://arxiv.org/abs/1409.4842.

Vahadane, A. et al. 2016. Structure-Preserving Color Normalization and
Sparse Stain Separation for Histological Images. IEEE Transactions on
Medical Imaging 35, pp. 1962–1971. doi: 10.1109/TMI.2016.2529665.

Vestjens, J. H. M. J. et al. 2012. Relevant impact of central pathology
review on nodal classification in individual breast cancer patients.
Annals of Oncology 23(10), doi: 10.1093/annonc/mds072.

Veta, M. and Schau, G. F. 2020. Staining Unmixing and Normalization in
Python. Available at: https://github.com/schaugf/HEnorm_python
[Accessed: 11 May 2022].

Wang, J. and Perez, L. 2017. The Effectiveness of Data Augmentation in
Image Classification using Deep Learning., doi:
10.48550/ARXIV.1712.04621.

Wang, X. et al. 2021. Predicting gastric cancer outcome from resected
lymph node histopathology images using deep learning. Nature
Communications 12(1637), doi: 10.1038/s41467-021-21674-7.

https://www.nhs.uk/conditions/mouth-cancer/diagnosis/
https://arxiv.org/abs/1409.4842
https://github.com/schaugf/HEnorm_python

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Histopathology
	State of the art
	Selection of datasets
	Data augmentation
	Stain normalisation

	Specification and design
	Requirements
	Reading WSIs
	Deep learning architecture
	Hardware
	Interface
	Code structure
	Whole-slide approach
	Patch-based approach

	Implementation
	Model architecture
	Image pipeline
	Patch generators
	Trainer
	Classifier
	Whole-slide
	Patch-based

	Evaluation
	Annotation generator
	Data availability
	Code availability
	Challenges

	Results and evaluation
	Whole slide approach
	Dataset comparison
	Stain normalisation only
	Data augmentation only
	Stain normalisation and data augmentation
	Overall winner

	Patch-based approach
	Dataset comparison
	Stain normalisation only
	Data augmentation only
	Stain normalisation and data augmentation
	Overall winner

	Wisdom of crowds

	Future work
	Conclusions
	Reflection
	Higher resolution patches
	Loss and accuracy of models on training and validation data
	References

